Skip to main content Contents Index
Prev Up Next \( \renewcommand{\labelitemi}{$\diamond$}
\def\arraystretch{1.5}
\newcommand{\contentsfinish}{}
\newcommand{\separator}{\begin{center}\rule{\columnwidth}{\arrayrulewidth}\end{center}}
\newcommand{\tosay}[1]{\begin{center}\text{\fbox{\scriptsize{#1}}}\end{center}}
\renewcommand{\cftsecfont}{}
\renewcommand{\cftsecpagefont}{}
\renewcommand{\descriptionlabel}[1]{\hspace{\labelsep}\smallcaps{#1}}
\def\oldequation{\equation}
\def\endoldequation{\endequation}
\newcommand{\nl}{
}
\newcommand{\runin}[1]{\textls[50]{\otherscshape #1}}
\renewcommand{\sectionmark}[1]{}
\renewcommand{\subsectionmark}[1]{}
\renewcommand{\sectionmark}[1]{\markboth{{\thesection}.\ \smallcaps{#1}}{\thesection.\ \smallcaps{#1}}}
\renewcommand{\subsectionmark}[1]{}
\renewcommand{\sectionmark}[1]{\markboth{{\scriptsize\thesection}.\ \smallcaps{#1}}{}}
\renewcommand{\subsectionmark}[1]{}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\headrulewidth}{0.5pt}
\newcommand{\makedefaultsection}[2][true]{
}
\newcommand{\timestamp}{{\color{red}Last updated: {\currenttime\ (UTC), \today}}}
\renewcommand{\le}{\leqslant}
\renewcommand{\leq}{\leqslant}
\renewcommand{\geq}{\geqslant}
\renewcommand{\ge}{\geqslant}
\newcommand{\ideal}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\subgp}[1]{\left\langle\, #1 \,\right\rangle}
\def\p{\varphi}
\def\isomorphic{\cong}
\def\Gal{\text{Gal}}
\def\im{\text{im}}
\def\normal{\vartriangleleft}
\renewcommand{\qedsymbol}{$\checkmark$}
\def\lcm{{\text{lcm}\,}}
\newcommand{\q}[1]{{\color{red} {#1}}}
\newcommand{\startimportant}[1]{\end{[{Hint:} #1]\end}}
\renewcommand{\textcircled}[1]{\tikz[baseline=(char.base)]{\node[shape=circle,draw,inner sep=2pt,color=red] (char) {#1};}}
\newcommand{\crossout}[1]{\tikz[baseline=(char.base)]{\node[mynode, cross out,draw] (char) {#1};}}
\newcommand{\set}[1]{\left\{ {#1} \right\}}
\newcommand{\setof}[2]{{\left\{#1\,\colon\,#2\right\}}}
\def\C{{\mathbb C}}
\def\Z{{\mathbb Z}}
\def\bF{{\mathbb F}}
\def\Q{{\mathbb Q}}
\def\N{{\mathbb N}}
\def\R{{\mathbb R}}
\newcommand{\h}[1]{{\textbf{#1}}}
\def\presnotes{}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{conj}[theorem]{Conjecture}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{prop}[theorem]{Proposition}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{example}[theorem]{Example}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{investigation}[theorem]{Investigation}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 3 Factorization
In this chapter, we come to the heart of the text: a structural investigation of unique factorization in the familiar contexts of
\(\Z\) and
\(F[x]\text{.}\) In
Section 3.1 , we explore theorems that formalize much of our understanding of that quintessential high school algebra problem: factoring polynomials. As we saw in
Theorem 1.2.5 and
Theorem 2.4.14 , both
\(\Z\) and
\(F[x]\) have a division algorithm and, thus, are Euclidean domains. In
Section 3.2 , we explore the implications for multiplication in Euclidean domains. That is: given that we have a well-behaved division algorithm in an integral domain, what can we say about the factorization properties of the domain?
Finally, in the optional
Section 3.3 , we explore contexts in which unique factorization into products of irreducibles need not hold.